
William & Mary
W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

1990

Data Constraints in Function-Oriented Languages
Earl Stavis Harris
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for
inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact
scholarworks@wm.edu.

Recommended Citation
Harris, Earl Stavis, "Data Constraints in Function-Oriented Languages" (1990). Dissertations, Theses, and Masters Projects. Paper
1539625592.
https://dx.doi.org/doi:10.21220/s2-r4ht-vg56

https://scholarworks.wm.edu?utm_source=scholarworks.wm.edu%2Fetd%2F1539625592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etds?utm_source=scholarworks.wm.edu%2Fetd%2F1539625592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539625592&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539625592&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-r4ht-vg56
mailto:scholarworks@wm.edu

DATA CONSTRAINTS
IN

FUNCTION-ORIENTED LANGUAGES

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William and Mary in Virginia

Master o f Science

b y

Earl Stavis Harris Jr.

1 9 9 0

APPROVAL SHEET

This thesis is submitted in partial fulfillm ent of

the requirements for the degree of

Master of Science

Au t h o r

Approved, May 1990

Morell

A)<
Robert Noonan

Robert Collins

TABLE OF CONTENTS
A c k n o w l e d g e m e n t s i v
A b s t r a c t ... v
1. The Data C o n stra in t T h e s i s ... 2
2 . How This Thesis is O rganized .. 3
3 . W hat Data C onstra in ts Are About... 5
4 . The Data C o n s tra in t M ethod Has Unfulfilled P o te n t i a l 8
5 . The Data C onstra in t M ethod at Its Full Po ten tia l................................. 11
6 . The O bstacles of Im proved Softw are A nalysis ...15
7 . O vercom ing the O b s t a c le s 2 0
8 . In c o rp o ra t in g D ata C o n s tra in ts to S c h e m e ...2 4
9 . A Case Study of Scheme Data Constraints. 3 7
1 0 . P e rfo rm in g S ta tic Sem antic Analysis on Scheme D ata

C o n s t r a i n t s ... 4 3
1 0 a . M o t i v a t i o n .. 4 3
1 0 b .T h e S ta tic Sem antic Analysis Tool..4 4
1 1 . P lans fo r the F u t u r e4 8
A ppendix : An In tro d u c t io n to S chem e...5 2
B IB L IO G R A P H Y5 9
V I T A ..6 0

ACKNOWLEDGEMENTS
I wish to express my appreciation to Professor Larry Morell for his pa­

tience, guidance, and criticism throughout the investigation. I am also indebt­
ed to Professor Robert Noonan, Professor Robert Collins, Luis Martinez-
Renteria, and my wife Daniella for their thorough reading and criticism of the
ma n u s c r i p t .

i v

ABSTRACT

This study explores the boundaries of a data constraint method for de­
veloping software. The technique allows programmers to impose constraints
on data objects. The system works best when applied to function-oriented lan­
guages. (In a function-oriented language, subprograms model mathematical
functions. The use of erasable memory cells are discouraged.)

Data constraints can heighten a person’s understanding of specific ob­
jects by discriminating objects within their class. However, programmers who
use data constraints in a conventional programming language only get a lim­
ited understanding of their software products. Therefore, programmers
should use a language that is simple to understand, yet suitable for practical
application development. For example, to make Scheme support data con­
straints, this thesis proposes adding extensions to the language. These exten­
sions are based on a new function declaration which can describe its input.
This thesis includes a formal definition for this enhancement which refers to
Scheme’s formal semantics.

This report presents a study that shows the advantages of using the ex­
tended Scheme to build a software system. In contrast to the positive aspects of
the study, the chief drawback is that the system checks all data constraints as
the program executes. This practice degrades performance. The feasibility of
building a system which can validate most of the data constraints before the
program executes is one of the open questions left by the study.

DATA CONSTRAINTS
IN

FUNCTION-ORIENTED LANGUAGES

I. The Data Constraint Thesis
In software engineering, imposing constraints on program data objects

is a powerful technique with vast potential. But today, its potential is unreal­

ized because programmers use the technique improperly. This leads us to an

important thesis:

A powerful software design method, which allows programmers to im­

pose useful constraints on d a ta . objects, is best suited fo r simple, orthogonal

(flexible) function-oriented languages. (A function-oriented language sup­

ports the applicative style of programming, like a functional language.

Unlike a functional language, a function-oriented language includes the as­

signment statement. The assignment statement is an impurity in applicative

p r o g r a m m i n g .)

To support this thesis, this report will show the following.

1. The data constraint method is a useful technique in other academic
disciplines. So applying this technique to computer science should
have many potential benefits.

2. Current program m ing systems cannot support this im portant
method adequately. For example, a typing system alone does not ex­
ploit the full power of data constraints.

3. By using a language that can support the method adequately, the
programmer can document and check more data constraints. Tools
can check more constraints automatically. Scheme is a language
that can support this method, because it is function-oriented.

4. Given the simple data constraint system described in point 3, one can
build a system that will provide extended constraint checking sup­
por t .

5. Researchers should study the data constraint method further.

Page 2

2. How This Thesis is Organized
Section three of this thesis serves as an introduction to the data con­

straint method. It describes the design method and explains its use in other

disciplines. It also gives applications of the data constraint method in comput­

er science.

Sections four, five, and six of this thesis provide motivation for a new

data constraining technique. Section four of this thesis explains why present

applications of the data constraint method in computer science are unsatisfy­

ing. Section five shows why software engineers should be motivated to push

the data constraint method to a higher plane. Section six explains why cur­

rent data constraint methods are unable to realize their true potential.

Section seven reviews this thesis’ strategy for overcoming the obstacles

of the data constraint method. This section will discuss Scheme in some detail.

Those unfamiliar with this programming language should read the introduc­

tion to Scheme in the appendix.

The eighth section defines the theory that extends Scheme to support

the data constraint method. It also discusses some interpretations of the theory

that supports run-time data constraint checking.

The ninth section is a case study that uses the method to write a Scheme

program. Software tools will provide run-time checking support. Here, the

method allows the programmer to use data constraints in an effective way.

The tenth section, describes a Scheme tool that could be the basis for a

system that provides compile-time checking support.

Page 3

Page 4
The final section summarizes what questions researchers must explore.

The appendix contains an introduction to the programming language

Scheme. It is for those who are unfamiliar with this programming language.

3. What Data Constraints Are About
This section defines the term data constraint and gives many examples.

These examples show that data constraints are important tools in many aca­

demic disciplines.

Technical writers define a noun by first classifying it as a member of a

particular category. Then, they constrain the noun for that classification. For

example, to classify something as a four-wheeled vehicle, one can get an

image of a car, a truck, or a van. But by adding that this vehicle has an ele­

gantly dressed driver and is pulled by horses around Central Park, one realizes

that this is a description of a buggy. The explanation of how this four-wheeled

vehicle differs from other four-wheeled vehicles is a constraint on the defini­

tion. Focusing our attention on the constraint increases our understanding of

the object.

Also, set theoreticians might describe even numbers as the set of num­

bers such that any arbitrary member of that set, called E, must satisfy the con­

dition that E mod 2 is equal to 0 (i.e. 2 divides E evenly). Here, “numbers” is

the class of objects. The object schema E represents any arbitrary number

which is an alleged member of the set of even numbers. The condition E mod

2 = 0 represents a characteristic function which describes the set of even

numbers. It is also a constraint; this condition discriminates even numbers

from non-even numbers. This set theoretical definition corresponds to our in­

tuitive model of even numbers. The following figure describes the set.

Page 5

Page 6

Numbers: (the universe)

E mod 2 = 0E mod 2 * 0

Like other academic disciplines, the understanding of data constraints is

essential to programming.

When computer scientists design abstract, amorphous objects, data con­

straints can give these objects form and structure.

Also, throughout a program’s life cycle, software engineers constantly

check to see if their creations meet some informal condition. When they ask,

“Does the program do what our customers expect?” , they are checking con­

straints informally.

Furthermore, developers check constraints during debugging. A debug

statement may display the value of some variable, so the developer can see if

that variable satisfies a needed condition. For example, a debug statement may

help a developer check if an index is still within the bounds of an array.

The preceding examples are cases where developers check informal

constraints. The following are some examples of formal data constraints in

p r o g r a m m i n g .

Strongly typed systems allow developers to constrain variables to cer­

tain object classes in a formal way. This aids in detecting certain inconsisten­

cies at compile-time (before the program executes). And these systems may

provide features like subranges and subtypes to constrain these classes fur­

Page 7
t he r .

Another example of formal data constraints in programming is program

verification. Program verification tries to prove that a program satisfies all

data constraints, without executing the program. Since the 1960’s, much re­

search has been dedicated to this field. Researchers want to produce a medium

in which the average programmer can use formal mathematics and logic to

prove that their programs meet their specification. Some verification tech­

niques define the properties of program constructs with a set of axioms (ax­

iomatic semantics). Other techniques associate a mathematical model (denota-
s

tional semantics) to a programming language’s framework (the core language

subset that defines the complete rules of the language).

Another example of formal program constraints is logic programming.

By describing certain facts about a system, one develops a program implicitly.

These facts are data constraints. Prolog is the main logic programming lan­

guage; it is based on Horn clauses (a subset of logic that automata can execute

efficiently). The following facts are from Clocksin & Mellish.1

member (X, [X |]) .
member (X, [i Y]) member (X, Y).

These definitions describe the concept of list membership (when an ele­

ment is a member of a list). The first definition says that if the given value

and the head (first element) of the list are the same, then the given value is a

member of the list. The second definition says that a given value is a member

of the list, if that given value is a member of the tail of that list (the second

through last element).

One can see that computer scientists use data constraints in various

ways to help people understand systems.

1 W.F. Clocksin and C.S. Mellish, Programming in Prolog , second edition,
Springer-Verlag, Berlin, Germany, 1984, page 55.

4. The Data Constraint Method Has

Unfulfilled Potential
This section will show how current usage of constraints in computer

science is unsatisfying.

Most programmers specify constraints informally, using English prose

within comments. There are problems with having comments as the only de­

sign documenting medium.

1. To some, comments are something to put into a program after it is
finished, almost as an afterthought. Programmers take this view of
comments because they are loosely coupled with the program.
Comments are something placed within the program, but not part of
the program itself. Furthermore, in a real programming environ­
ment, programmers reap greater rewards from producing more pro­
grams, even at the expense of less comments.

2. Comments can't affect a program, because they are not processed;
the compiler ignores the information in the comments.

If documentation was part of the program medium and if it helped

coders complete their programs, there would be more motivation to document

programs. It would be advantageous if compilers could process some high-

level design information and use it to confirm whether the program meets the

requirements of the high-level design.

Page 8

Page 9
The program specification of customers are usually hazy, because they

don't have a clear picture of what they want. To some extent, these type of

specifications will always be hazy. But, if developers used more formal pro­

gram specifications techniques when designing software, they could clarify

certain aspects of a project. Furthermore, as one changes the program speci­

fication during the program's life cycle, one can better comprehend the con­

sequences of the changes. And if the specification technique is formal

enough, it might be possible to write tools that can detect which sub-programs

are no longer consistent with the modified specification.

Though debug statements help programmers detect data constraint vio­

lations, data constraint described as debug statements do not exist throughout

the life cycle of a program. Once the program is “debugged”; coders remove

debug statements, because they destroy the program's aesthetics and degrade

p e r f o r m a n c e .

Though conventional strongly typed languages are helpful, there are

many interesting constraints on objects which they cannot describe. For ex­

ample, the correctness of a program may depend on the fact that a certain

variable can only assume even values. But conventional strongly typed lan­

guages are not powerful enough to record this sort of constraint in a type defi­

nition. Given an enumerable type, a conventional type language might only

have facilities to produce a subrange for that type. Here is such an example.

subtype INDEX is INTEGER range 1..100;
I : INDEX := 1;

Aside from its limited descriptive power, strongly typed, procedural lan­

guages have complicated rules for type agreement. Such rules are an obstacle

to programmers. While the programmers want to solve a problem, they are

distracted by the many peculiarities in the language medium they use.

Page 10
Ada is an example of a procedural language that has introduced many

complex rules to support strong typing to a high degree. In later sections, this

thesis will discuss why such languages are complicated.

Though program verification sounds promising, for many reasons, for­

mal program verification does not influence the average programmer.

Program verification has become chiefly an intellectual, classroom exercise

applied to simple program segments. The usage of program verification as a

method to develop large scale, production quality programs is limited.

As one studies logic programs, one can see there are some constraints

that they can't describe. In the list membership definition, the property that

is conspicuously absent from the definition is

not member (X, []).

This states that it is not true that something is a member of an empty list

(i.e. the empty list has no members). This is a reasonable thing to document.

But negated axioms are not part of the syntax of Prolog (this prevents users

from developing non-Horn clauses axioms). To simulate negated axiom, Prolog

treats negation as failure (if Prolog can't prove it, then it is false). But the

concept of “negation as failure” is not equivalent to logical negation. It would

be advantageous if there were a logic programming language that allowed

programmers to document negated axioms.

One can see that the application of data constraints in computer science

has its problems.

5. The Data Constraint Method at Its Full
P o ten tia l

In contrast to the formal and informal examples described earlier, the

method described in this thesis includes

1. Formal, system-defined constraints.
2. Constraints that can record many interesting properties.
3. Constraints feasible to use in large scale, production quality pro­

gr ams .

What are the benefits of developing such a formal method? Our inabili­

ty to develop formal definitions for software systems has prevented software

engineers from making significant improvements in the software process.

Consequently, software development lags behind hardware development. For

example, Intel has recently development the 486 microprocessor. Yet, devel­

opers are still trying to perfect programs which exploit the features of the 286

microprocessor (which is two generations behind in hardware technology).

So today, when computer scientists try to provide state-of-the-art technology

to the world, perfecting the software has become the bottleneck. Since the

bottleneck determines the flow of progress, scientists concentrate on remov­

ing obstructions at the bottleneck.

Page 11

Page 12

Today, as the cost of memory decreases and hardware becomes more ef­

ficient, customers request programs with more power. Likewise, the new soft­

ware becomes more complex. As program specifications become more com­

plex, the time necessary to perfect this software increases. Since software has

become the bottleneck, computer scientists should concentrate on finding ef­

ficient ways to produce and maintain complex programs.

To support programming for large projects, modern day languages pro­

vide more powerful constructs. This is good; when a developer writes 100 lines

of code today, that code segment will do more than the same amount of code in

an older, less powerful language. But this does not solve the whole problem.

To make it feasible for a developer to verify that the 100 lines of code meets its

requirements, the developer must have complete understanding of the pro­

gramming language. It is not enough for the developer to say, “it works, but I

don't know why it works.” If the complexity of the programming language is

beyond human comprehension, then that language has not solved the prob­

lem. Any language that improves the software process must provide power

within a simple model.

For the data constraint method to reach its potential, the high-level in­

formation about the program must be stored within the program. As a benefit,

Page 13
translators can take advantage of this information to improve semantic analy­

sis. If computer scientists put programs in the proper medium, a smart com­

piler will be able to manage much of the complexity that currently burdens

the programmer. Furthermore, a smart compiler will be able to make many

design decisions that programmers must make today. If software tools can

manage more implementation details, programmers can manage more complex

software projects. The programmers will work at a higher level. They will

also devote their creativity to analyzing problems and producing elegant, easy

to maintain, easy to reuse solutions. In effect, computer science would have

removed the bottleneck.

One can compare the development of automatic heap management to the

general state of programming today.

Before automatic heap management, the coder had to manage the heap

directly. To ensure that the program met its requirements, the coder had to

concentrate on avoiding dangling references (where the program has access

to deallocated memory). He also had to write the program so it would avoid data

loss (where all access to some allocated memory was lost, making collection of

that data impossible). Preventing these situations was a distraction to the

coder.

Now, when a programmer uses a language that has automatic heap man­

agement, he has no concern for dangling references or data loss. He concen­

trates more on the problem, and less on the medium used to solve the problem.

In the past, automatic heap management had large performance penal­

ties. But today, there are clever ways to provide efficient automatic heap man­

agement. For a large class of applications, the overhead of heap management

is acceptable. But a developer still cannot justify the cost of automatic heap

management in some real time systems that have critical timing constraints.

The current state of programming is like a language which has no auto­

Page 14
matic heap management. In both cases, programmers must manage many de­

tails. And future software analysis tools, like automatic heap management,

should manage more programming details. The tools will catch more errors

early. This reduces the concern for extensive testing. This will simplify the

task of the programmer. Furthermore, future software tools will become effi­

cient enough to help programmers in a large class applications. But there will

probably be some applications where it will be necessary to manage all the de­

tails, to meet the application’s requirements.

In summation, the goal of data constraints is to allow programmers to

tell more about the program to the translator. Therefore, understanding how

to apply formal data constraints to program development is one step to simpli­

fying software development.

6. The Obstacles of Improved Software
A n a l y s i s

A large part of problem solving involves defining the problem. This

section will isolate why the data constraint method has not reached its true po­

tent i al .

Since most strongly typed languages are also procedural, they have an

intrinsic problem. It is difficult to introduce new technologies into a procedu­

ral languages, because they have inflexible frameworks. John Backus (Turing

Lecture Award winner) argues that a language should have a small framework

which can support a great variety of powerful features as changeable parts

(the part of the programming language that the framework expects and the

framework defines). Unfortunately, this is not characteristic of a procedural

language. Since every detail of the computation changes state, the language

designer must describe every detail of every feature into the state and its tran­

sition rules.2 Hence, the framework must define most language features. The

resulting framework becomes complex and rigid.

2 John Backus, Can Programming Be Liberated From the von Neumann
Style? A Functional Style and Its Algebra of Programs*, P r o g r a m m i n g
Languages A Grand Tour, Computer Science Press, page 178.

Page 15

Page 16
Because of the inflexible framework, the following cyclic scenario aris­

es. Programmers yearn for a simple procedural language. Language design­

ers produce such a language. But because of the inflexible framework and the

scarcity of features, the programmers can't build what they want. The pro­

grammers then request more built-in features. Because of the inflexible

framework, the complexity of the language framework increases greatly as

new features are hooked into it. This augmentation process continues until

the programmers say the system is too complicated. Then, the programmers

yearn for a simple language again.

For example, consider the strongly typed procedural language Ada. It is

based on Pascal. It was created because other languages in the late 70’s were

deficient in meeting the needs of the Department of Defense. Then, re­

searchers produced supersets of Ada, called Ada-based design languages, to ad­

dress the deficiencies of Ada. Meanwhile, many complain that the Ada pro­

gramming language is too complex. So any superset of Ada would be even

m o r e complex.

An approach to breaking this cycle is to design a simple language with

much power. To provide this, designers will need a simple, flexible frame­

work. Then, they can add new features as changeable parts. No matter how

complicated the features are, designers will build all new features on top of a

simple, unifying concept.

Besides the limits of procedural languages, program verification and

logic programming are limited because computer scientists have not found an

effective way to use mathematics to analyze real programs.

Most program verification methods apply mathematics to programs by

introducing a meta-language on top of the programming system. In function­

al correctness, a coder uses mathematical functions to document program

input states and output states. These functions describe the program on a

Page 17
higher level. In other methods, they use predicate calculus to describe pro­

gram data spaces and the effect of statements on that state. These logical for­

mulae describe the program on a higher layer.

Unfortunately, it is questionable whether adding a specification layer to

a procedural language, which is different from the program medium, will

make programming simpler. One of the reasons Von Neumann languages are

complicated is that the assignment statement breaks the language into the

world of expressions (values) and the world of statements (variables). It is

counter-intuitive to expect to simplify the management of the complexity of

this two-layered system by simply adding another, completely different layer.

The complexity of the original language does not go away.

The language designer should ensure that programmers work in as few

layers of development as possible. Therefore, an implementation language it­

self should allow developers to describe a program's data constraints. The com­

plexity of a meta-system is an added burden.

Verification has difficulties in procedural programming languages be­

cause some program constructs are difficult to specify formally. Verification

methods for procedural languages usually ignore such constructs. In effect,

they only consider a subset of procedural languages. Usually researchers re­

move unstructured statements and shared references from the procedural lan­

guage's working set.

Aside from this problem, it is debatable whether conventional machines

can simulate the theoretical push-down automaton or Turing machines. While

conventional machines have finite memory, both automata models have some

form of countably infinite storage. Some claim that conventional machines

are glorified forms of finite automata. But others argue that conventional

computers are equivalent in power to a Turing machine. The latter group

claims there is a way to simulate infinite memory. When the machine fills a

Page 18
disk, the machine can suspended itself until a user gives the machine another

disk. One assumes the user is always able to “buy” more disk space when the

system “requests” it. However, it might be unreasonable for a machine to

work this way; some machines must work independently.

Conventional machines exhibit their finiteness when they use limited

or approximate representations of numbers. Though some programming data

are called integers or reals, they do not behave like their mathematical coun­

terparts. Computer integers are bounded; mathematical integers are not.

Though there are finitely many computer reals between two points on a num­

ber line, there are infinitely many mathematical, rational numbers. It is im­

proper to think that these program data types are equivalent to their mathe­

matical counterpart. The following is a program used on the William & Mary

Comprehensive Examination Question List (EQL).3

program Test;
var

count : integer;
tiny : real;

begin
tiny := 1.0;
count := 0;
repeat

tiny := tiny / 2.0;
count := count + 1

until (1.0 + tiny = 1.0);
writeln(count)

end.

If c o u n t were a mathematical integer and t i n y were a mathematical,

rational number, then this program would never halt. The c o u n t would sim-

3 Comprehensive Examination Question List, The College of William & Mary,
1989, page 4.

Page 19
ply grow as t i n y would approaches zero asymptotically. 1 .0 + t i n y would al­

ways be greater than 1 .0 , even if it was greater only by a very small value.

But c o u n t is not a mathematical integer and tiny is not a mathematical,

rational number. When the floating point representation for 1 .0 + t i n y h a s

more significant binary digits than the mantissa of a floating point register

can store, rounding occurs. When c o u n t equals the length of the mantissa of

the register used to store 1 .0 + t i n y , then the system rounds off the sum

when it is stored. This makes the loop stop.

For a given system, the developer must decide either to make the soft­

ware system simulate the unbounded, enumerable constructs of math or simu­

late conventional hardware. If one wants to simulate the unbounded, enumer­

able constructs of math, then the system should enter an error environment

(or possibly request more memory), when the system cannot support the un­

bounded illusion. Likewise, when verifying a program the user must know

which set of axioms to use, the axioms of numbers or the axioms for bounded

computer integers and floating points.

In summation, software engineers are still searching for an effective

way to analyze programs. The search is difficult for the following reasons.

The fixed framework of most strongly typed procedural languages
creates complexity problems.

• Adding layers of specification will not remove the complexity of the
base language

• Unlike theoretical computer models, convention machines have dif­
ficulty representing unbounded, enumerable entities.

To overcome these problems, software engineers should consider alter­

nate programming models with flexible frameworks (which allow introspec­

tion) and simple semantic definitions. Furthermore, all programmers should

know how the behavior of bounded computer integers and reals deviate from

the behavior of mathematical integers and rational numbers.

7. Overcoming the Obstacles
How can one get around the obstacles of improved software analysis?

Computer scientists cannot solve all the troubles of software develop­

ment by adopting strongly typed, non-procedural languages. Though there

are problems with procedural languages, there are also problems when one

goes to the other extreme.

After John Backus' Turing lecture, many researchers developed func­

tional languages (which avoid state machine semantics). Functional lan­

guages are characterized by their elimination of the assignment statement.

Functional languages are conceptually simpler than procedural languages. In

some programming problems, they are more powerful. But, there are some

classes of problems difficult to describe and solve in a functional language, yet

simple, elegant, and efficient to describe and solve in a language with assign­

ment statements. For example, problem specifications that have some objects

whose state is innately history-dependent may be unnatural to describe func­

tionally. This is the case with specifications that have explicit parallelism, an

interactive user interface, or input-output to secondary storage. Regrettably,

functional languages are limited.

For general-purpose programming, one could use a language that sup­

ports applicative style programming, yet allows assignment as a necessary im­

purity. Scheme is such a language. This section will discuss why I chose

Scheme to support data constraints.

Page 20

Page 21
In the revised report, Scheme provides essential decision procedures to

determine the type of a value. For example, the procedures p a i r ? , n u m b e r? ,

and p r o c e d u r e ? determine whether an object is a dotted pair, number, or pro­

cedure. These type checking functions are polymorphic and total. A program

can apply any object in the Scheme domain to these functions.

It is natural for a Scheme programmer to use essential procedures to

build new decision procedures for type checking. For example, a Scheme pro­

grammer can define variant types. To determine whether an object is either a

string or an integer, one can use the following procedure.

(lambda (se) (or (string? se) (integer? se)))

Also, one can define a type with a constraint in Scheme. In section 3,

even numbers are described as a class of integers with a constraint. Likewise,

the predicate ev en ? imposes a constraint on the predicate i n t e g e r ? .

(define even?
(lambda (se) (and (integer? se) (zero? (modulo se 2

)))))

Unlike Scheme, strongly typed languages, like Ada, do not have provi­

sions to support total, polymorphic functions. Therefore, strongly typed lan­

guages have limited type support.

Since strongly typed languages force users to declare a type for each

object, these languages have difficultly creating objects that can be more than

one type. If an Ada programmer wanted to create objects to store either static

length strings (dynamic arrays are another more complicated issue) or inte­

gers, he would probably have to define a variant record. This is an inferior

solution, because the user is burdened with the detail of managing a tag. A

Page 22
programmer should only work with a tag, if it is part of the problem descrip­

tion. Otherwise, the tag is an unnatural and distracting implementation detail.

Though Scheme can support defining a type with an arbitrary con­

straint, like even?, Ada’s subtype and derived type declarations are unable to

produce such a characteristic function.

To correct this deficiency in a strongly typed language, the framework

of the language must be extended to include an “any” type (which is compati­

ble with all types). If Ada supplied a form of “any” type and basic type check­

ing functions (like s t r i n g ? or f l o a t ?) , then programmers could write type

checking procedures. (To some degree, generic formal parameters in Ada try

to simulate what one can do with polymorphic functions.)

And Ada should include, a, simple, tagless, “oneof” type (which says the

type of this object is one the following types). This addition is necessary be­

cause a “oneof’ type is more appropriate than a variant record in certain situ­

ations .

But generally, polymorphic functions conflict with strong typing.

Their introduction into a strongly typed computer language shows that the

strong typing paradigm is sometimes too rigid. Furthermore, the introduction

of polymorphic functions into a strongly typed language will undoubtedly in­

crease the complexity of the language framework. For example, though “any”

types seems like a good extension to Ada, it is possible that an “any” type would

create complications in Ada's complex overloading rules.

Therefore, when compared to strongly typed procedural languages, the

programming language Scheme has typing support with exceptional descrip­

tive power. This provides power without sacrificing simplicity.

And, when compared to strongly typed procedural languages, Scheme

has a framework with a simple, flexible semantic definition. Scheme's flexible

framework can support extended data constraint facilities as changeable parts.

Page 23
This makes the extensions easy to understand.

Unlike functional languages, Scheme’s inclusion of an assignment

statement makes it feasible for general purpose programming.

When one compares Scheme with Prolog, one can see that it is easier to

describe logical conditions if one is not restricted to Horn clauses.

Also, since a Scheme program can be introspective, a Scheme coder can

produce formal specifications and avoid the layered subsystem. And, program­

mers use Scheme to write large scale, production quality programs.

Furthermore, Scheme has a mathematical, semantic definition. One can see

that if more programmers adopt Scheme, they can reduce the gap between the

mathematical computer theory and large scale, production quality programs.

8. Incorporating Data Constraints to
Scheme

In the framework of Scheme, the lambda expression is the basic binding

construct. Syntactically, the lambda expression is a parenthesized list whose

first element is the name lam bda. A parenthesized list of zero or more vari­

ables follows the name lam bda. And one or more expressions follow this list.

Here is a sample of the syntax in Backus-Naur Form.

<lambda expression> : (lairibda (<variable>*)
<expres s ion>f)

The expression ((lam b d a (x y) (- x y)) 3 4) evaluates to -1; the

lam bda expression first binds the variables x and y to the values 3 and 4 an d

then subtracts y from x.

Scheme defines other more sophisticated binding forms as changeable

parts. Some examples of these forms are the l e t , l e t * , and l e t r e c e x p re s ­

sion. To build these extended forms, the lambda expression is a necessary com­

p o n e n t .

These extended binding forms are syntactically alike; all the extended

forms discussed are parenthesized lists whose first element is their name (l e t ,

l e t * , or l e t r e c) . Unlike lam bda, a parenthesized list of zero or more vari­

able/value pairs follows the particular name. Finally, one or more expressions

follow this list. For example, the l e t expression has the form.

Page 24

Page 25

<let expression> : := (let (<variable/value pair>*)
<expression>+)

<variable/value pair> : := (<variable> <expression>)

This section adds new changeable parts to Scheme. To discriminate

Scheme from Scheme with extensions, the extended Scheme will be called

Scheme* (pronounced “Scheme Plus”). Scheme+ is an abstract language ex­

tension; it defines many models. The basic form unique to Scheme* is called

the “constrained lambda” expression (or c - la m b d a , for short). Syntactically it

is like the lambda expression, but there are two differences.

1. The first element in the parenthesis list is named c - la m b d a .
2. A special data constraint extension follows the argument list.

The following is the syntax of the constrained lambda.

<constrained lambda expression> : :=
(c-lambda (<variable>*)

<data constraint expression> <e^>ression>+)

Scheme+ extends the syntax of Scheme so all Scheme's key binding

forms has a constrained version. In addition, this section defines a new form

called a “constrained expression” (or c - e x p r , for short). It constrains the

value of an expression. One can also use it to constrain the range of a given

f u n c t i o n .

The following example shows how to use constraints in Scheme+.

Considering the following external definitions.

=> (define even?
(lambda (se)

Page 26
(and (integer? se) (zero? (modulo se 2

)))))

even?
= > (define next-even (lambda (e) (+ e 2)))
next-even

The code writer hopes that readers, by looking at the name and the body

of the next-even definition, know that they should apply only even numbers

to the procedure. The function next-even is meant to take an even number

and produce the next even number. Unfortunately, the lambda expression is

not descriptive enough to relay this fact; when given an odd number, the

function is defined (it terminates normally). Considering the body of the

lambda expression, one can only infer that the parameter emust be some num­

ber .

Maybe the coder should put in a comment. This comment should docu­

ment the fact that this lambda expression is meant to take an even number.

However, (next-even 5) will not be trapped as an error; it will produce 7.
This is unfortunate because undetected errors can cause a program to have

unexpected results. It is harder to find these types of errors, because the dis­

tance between the location of the error and the point where the error is de­

tected could be large. If programs are harder to debug, then this will increas­

es software development and maintenance costs.

Scheme* will allow code developers to rewrite the definition this way.

=> (define even?
(lambda (se)

(and (integer? se) (zero? (modulo se 2
)))))

even?
=> (define next-even (c-lambda (e) (even? e) (+ e 2)))
next-even

= >
Page 27

Now, after looking at the constrained lambda expression, readers can

deduce that they should apply only even numbers to the procedure. A com­

ment will be redundant. Various valid Scheme* models should be able to detect

(next-even 5) has a problem, by transforming (even? e) into a run-time

constraint check.

Now we are ready to define the syntax more formally.

The Syntax of Scheme*

D e f i n i t i o n : The constrained version o f a name called x is the “c-” prefix fol­

lowed by the name x.

D e f i n i t i o n : Scheme's key binding forms are lambda, let, let*, and letrec.

R u l e : The names c-lambda, c-let, c-let*, c-letrec, and c-expr are key­

words in Scheme*. (The first four are the constrained versions of the names

lambda, let, let*, and letrec.)

Rule: The following are called the constrained binding forms.

<constrained lambda expression> : :=
(c-lambda (<variable>*)

<data con stra in t expression> <expression>+
)

<constrained let expression> : :=
(c-let (<variable/value pair>*)

<data con stra in t expression> <expression>+
)

<constrained let* expression> : :=
(c-let* (<variable/value pair>*)

<data con stra in t expression> <expression>+

Page 28
)

<constrained letrec expression> : :=
(c-letrec (<variable/value pair>*)

<data con stra in t expression> <expression>+
)

<constrained expression> : :=
(c-expr <variable>

<data con stra in t expression> <expression>
)

Now that this section has defined the syntax of Scheme*, it will now give

meaning to these syntactic forms.

The Sem antics of Scheme*

D e f i n i t i o n : an unconstrained version o f a constrained version name n is n

with the “c-” prefix removed. For example, the name lambda is the uncon­

strained version of the name c - la m b d a .

D e f i n i t i o n : an unconstrained version o f a constrained binding form f is f

with its constrained version name replaced by its unconstrained version and

its data constraint expression removed.

D e f i n i t i o n : afunctional expression is one that supports the applicative style

because it does not treat variables as erasable storage cells. A functional ex­

pression cannot have side effects.

C o m m e n t : In the denotational semantics of Scheme, the function e i n t e r p r e t s

syntactic forms in the Scheme language framework4. The function e takes a

4 Rees, Jonathan and William Clinger, ed. Rev ised? Report on the
Algori thmic Language S chem e , MIT Artificial Intelligence laboratory,
September 1986, page 32.

Page 29
syntactic form E, an environment U, and a continuation K (the future of a com­

putation) and returns the result of evaluating E, given U and K. This result

contains information about the return value of E and the updated version of

the environment. This defines the language framework and allows one to de­

scribe certain properties.

Com m ent: In the following definitions, for any Scheme expression E, let E 1

be the result of taking E and reducing all its changeable parts to constructs in

the framework.

Def i ni t i on: A Scheme expression E is d e f i n e d under arbitrary environment U

and arbitrary continuation K, if the semantic function application e (E1, U,

K) halts. Otherwise, E is un d e f in ed .

D e f i n i t i o n : An expression E- ̂ is at least as defined as E 2 if and only if, when

E 2 is defined, e (E ^ 1, U, K) = e (£>2 ' f U, K) for any environment U an d

any continuation K.

C o m m e n t : The following rules use the Scheme begin expression. This is a

special form which is like the compound begin statement seen in other lan­

guages. Unlike the compound begin statement, the Scheme begin e xpr e s s i on

returns the value of the last expression.

C o m m e n t : In the following rules, let ft be an undefined (non-terminating)

Scheme expression.

R u l e : Any arbitrary constrained lambda expression of the syntax

(c-larnbda (<variable>*)

Page 30
<data constraint expression> <expression>+)

is equivalent to some Scheme expression that is at least as defined as

(larrbda (<variable>*)
(if

(and
{ <data constraint expression> is funct ion­

al }
<data constraint expression^

(begin <expression>+)
n))

R u l e : Given any arbitrary constrained binding form with the syntax

({name} (<variable/value pair>*)
<data constraint expression> <expression>+)

is equivalent to some Scheme expression that is at least as defined as

({name} (<variable/value pair>*)
(if

(and
{ <data constraint expression> is functional }
<data constraint expression:̂

(begin <expression>+)
n))

The expression in curly brackets is a pseudo expression. Its determines

whether the data constraint expression is a functional expression.

R u l e : Any arbitrary constrained expression with the syntax

(c-expr <variable>* <data constraint expression> <ex-

pression>)
Page 31

is equivalent to

((c-lambda (<variable>)
<data constraint expression> <variable>) <expres-

sion>)

This theory defines the constrained expression as a changeable part; it

is a special case of the constrained lambda.

This completes the theory of Scheme*. The previous schemata which

represent the reduction of constrained binding forms are the minimal models

(least defined). A constrained binding form is undefined if the data constraint

expression is either not functional or not true. A Scheme* interpretation can

extend the domain of the minimal model in interesting ways. Given the mini­

mal model, an interpretation can extend the domain by

1. Replacing the i f expression's condition C with some condition C'
such that C implies C'. As a benefit, the new model's t h e n part ac­
cepts a superset of the domain accepted by the minimal model's t h e n
par t .

2. Replacing ft with a defined expression.

Also, this theory has an important property.

T h e o r e m : Given an arbitrary constrained binding form, if the data constraint

expression is functional and true, then the constrained binding form is equiv­

alent to its corresponding unconstrained binding form, under any interpre­

tation o f Scheme+.

P r o o f : Consider any arbitrary constrained binding form whose the data con­

straint expression is functional and true. One can reduce the body of the cor­

responding minimal model so it is equal to the body of the corresponding un­

Page 32
constrained binding form.

The following is the body of a minimal model.

(and
{ <data constraint expression> is functional }
<data constraint expression^

(begin <expres s ion>+)
Cl)

Based on the given, both conjuncts are true; we can substitute them

with true.

(if (and true true) (begin <e>qoression>+) Cl)

These constant expression can be folded (simplified) as follows.

(if true (begin <expression>+) Q) ; conj unct i on is
t r u e

(begin <expression>+) ; then part always
t a k e n

<expression>+

The last reduction is valid, because the expression is within the context

of a binding form, where the syntax allows one or more expressions. This

shows that the minimal and unconstrained versions are equivalent when the

condition is functional and true. Since this equivalence is a property of the

minimal model, any model that is at least as defined as the minimal model also

has this property (because they are equivalent where the minimal model is de­

f i ned) .

One may notice that the Scheme* theory has no provision to constrain

the state transitions of erasable storage cells. Scheme down-plays the state-

Page 33
machine model; as a function-oriented language, Scheme encourage program­

mers to use an applicative style. Hence, this thesis chooses not to create “spe­

cial case” constraints for erasable storage variables in this early stage of re­

search. The constrained lambda and the constrained expression, constrains

values . In the following example, notice how the constrained lambda creates

the recursive analog to the loop invariant.

=> (define fact
(c-lambda (n)

(natural? n)
(if (zero? n) 1

(* n (fact (subl n))))))
fact

Notice that the constraint is on the input value, not the variable's

erasable storage cell. There is nothing to prevent someone from assigning a

value to n that is not a natural. Also, this thesis provides no “special case” ana­

log to the statement constraint. Again, this thesis justifies this type of support,

because the Scheme language encourages programmers to use the applicative

style.

However, if a programmer wants to assign a new value to a variable, one

can get benefits like an object constraint by assigning a constrained expres­

sion to that variable. Also, a sequence of “statement-like” expressions can

have constrained lambdas (with no parameters) and constrained expressions

interspersed to check state transitions.

Support for the object constraints should be reconsidered in a later

stage of research. Fortunately, this type of support is not crucial when one

stays close to the applicative style.

What is a valid Scheme* interpretation? (At the point, we are not con-

Page 34
cemed with implementing Scheme* on a particular Scheme dialect. Rather we

are describing the behavior of various versions of Scheme*.) A Scheme*

model candidate is a method that reduces all constrained binding forms into

Scheme (like a changeable part) in a way that satisfies the theory.

For example, to support run-time constraint checking, we can take the

minimal model and convert its body into the following.

(if <data constraint expression>
(begin <expression>+)
{ enter error environment })

This reduction is part of a binding form that is at least as defined as the

minimal model. It simply replaces the i f condition with its second conjunct

and replaces ft.

If the constraint is false when the binding form is evaluated, the else

part invokes an error environment. This else part should notify the user,

telling him which constraint is violated. When the control flow of the pro­

gram enters the error environment, the programmers can check the values of

variables visible to the current lambda expression.

For example, the definition

(define next-even (c-lambda (e) (even? e) (+ e 2)))

can be transformed into

(define next-even
(lambda (e)

(if (even? e)
(begin (+ e 2))
(break-point "Constraint Violation!"
1(even? e)))))

Page 35
If the application (n e x t - e v e n 5) is evaluated, the system will trap the

error at run-time.

This interpretation does not check if the data constraint expression is

functional. Fortunately, interpretations of Scheme* that check this condition

are interesting only if one plans to write Scheme programs that use many as­

signment based operations.

Another Scheme* interpretation converts the body of each binding

form into simply < e x p r e s s i o n > + . This reduction is part of a binding form

that is at least as defined as the minimal model. This interpretation replaces

the condition of the minimal model with the value true and folds the true con­

stant. Since it doesn't check the condition; this model has minimal fault toler­

ance support. However, it is the most efficient model. One can see that not

every interpretation of Scheme must reduce each constrained binding form

into an unconstrained binding form with an i f expression body.

How can one implement Scheme* in Scheme? Each constrained binding

form can be declared as a Scheme macro. Since most Scheme dialects have a

facility that supports user-defined macros, it is not necessary to use a parser

generator to write a Scheme* parser. This theory defines the syntax in a way

that expects this strategy. This macro declaration should reduce the con­

strained binding construct into a special form of unconstrained binding con­

struct which is valid for the Scheme theory.

I built a Scheme* interpretation for PC-Scheme. I used this system in

the case study in the following section. In this interpretation, there is a global

variable called debug-m ode. This variable determines how the constrained

binding form macros will expand. If debug-m ode is true, any occurrence of

the constrained binding form is expanded to include its data constraint expres­

sion as a run-time check. This is like the first Scheme* interpretation de­

scribed earlier. If debug-m ode is false, the run-time data constraint is omitted.

Page 36
This is like the second Scheme* interpretation described.

If one loads a reliable Scheme package, one can set debug-m ode to false

and produce efficient code. If one is developing or changing a Scheme pack­

age, one can set debug-m ode to true before loading the package. Then the sys­

tem will check the constraints.

Ideally a good Scheme interpretation should include the run-time data

constraints only when necessary. Too many run-time constraints produce

large performance degradation. Too few run-time constraints reduces fault

tolerance. When using an implementation that supports run-time constraint

checking, the Scheme* should allow programmers to put checks in some

places and remove them from others. Then, he or she can provide the balance

of support they need.

One can also build tools to check Scheme* statically (at compile-time).

Such static checking tools must determine if constraints are “purely function­

al” and “always terminates”. Unfortunately these conditions are generally

undecideable. It is my hope that an analysis tool can prove most useful con­

straints have these properties.

One can see that the Scheme* theory is defined in terms of Scheme.

Also, developers can define the constructs of a Scheme* interpretations as

changeable parts. Since there is no need to extend Scheme's framework with

foreign constructs, this language extension should be easy for Scheme pro­

grammers to understand. Furthermore, the abstract nature of the Scheme*

theory will allow developers to define many interesting Scheme* interpreta­

t ions.

9. A Case Study of Scheme Data
C onstra in ts

This section illustrates the use of this constraint checking method to

build a large, natural-language processing system. This section describes a

simplified version of a system written in a Scheme*. The Scheme* implemen­

tation used allows one to use run-time constraint checking facilities during

development and turn them off in the finished product.

Each module takes as input a grammar for a subset of English, a gram­

mar component (something that occurs on the right-hand side of a production

from the given grammar), and a suffix of the original input sentence.

Each module returns an abstract variant record called conditional re­

sult. The tag of the conditional result is a Boolean. It indicates whether the

parser recognizes some prefix of the sentence parameter (with respect to the

grammar and the grammar component). If the tag is true, the conditional re­

sult contains successful parse data. This consists of a syntax tree with semantic

information and the suffix of the given string which hasn’t been processed.

If the tag is false, the conditional result contains some value to relay this fact.

The designer uses data constraint annotations to describe the domain

and the range of these functional modules. The description of the domain and

range has the usual abstract type (context-free grammars, grammar compo­

nents, strings, and syntax tree with semantic information). There are familiar

records with known structure (conditional results and successful parse data).

Page 37

Page 38
The definition of a grammar component is broad. To build a natural lan­

guage processor, one should refine the grammar component into partitions.

Then, one can build a handler for each specific form of grammar component.

Scheme partitions its domain of expressions into atoms and lists of expressions.

Therefore, it is reasonable for a natural language processor written in Scheme

to partition grammar components into symbols and sequence of symbols.

Furthermore, symbols can come in two varieties; terminal and non-terminal.

Non-terminal symbols should have rules that will provide alternate ways to ex­

pand them. Therefore, the modules for a natural language processor could be

la. parse terminal symbol
lb. parse non-terminal symbol
2. parse symbol sequence

In additions to types, the description of the domain and range of the

program defines relationships. The input of a module can't be any grammar

component; it must be one that occurs on the right-hand side of a production

from the given grammar. The input can't be any string; it must be a suffix of

the original string passed to the natural language processor. So given data

constraints, one can describe these relationships.

As developers create Scheme data constraints to document relations,

they get a better understanding of the module interface. For example, when

the grammar component passed to a parse symbol sequence module is an

empty sequence, the suffix sentence of any successful parse data passed back

is also empty. Therefore, it is incorrect to say that the suffix sentence must be

a p r o p er suffix of the input sentence.

During program testing, the debug-m ode flag is set before the program

loads into the interpreter. So, the data constraints help one to localize trivial

errors, like putting actual parameters in the wrong order. For example, given

a procedure with the form

Page 39

(lairibda (a b)
(and (integer? a) (integer? b) (<? a b))__ ___

)

this interpretation of Scheme* will signal a run-time error if a program ap­

plies the actual integer parameters to this procedure in the wrong order.

The development version of the program is slow and space inefficient.

When one is confident that one has eliminated the trivial errors, using pro­

gram verification and program testing, one turns debug-m ode off and com­

piles the modules.

As the system evolved, the constraints on particular aspects of the sys­

tem changed. For example, one might change the domain of a procedure from

proper lists to non-empty proper lists. If a program still passes an empty list to

the procedure, after one has made the proposed change to the program, the

system will catch the error. User defined constraints helps one to find out how

changes violated old constraints.

One can make the following observations.

1. If a data constraint cannot be true, then one would want it to be false

(it is possible for a constraint to raise an error or loop forever). This is the

case because some Scheme* interpretations handle false constraints elegantly.

2. Data constraints have the potential to be verbose. At the extreme,

documenting every possible data constraint makes the program look busy and

detailed. If the system checks all constraints dynamically, the constraint will

cause the program to run unnecessarily slow. A developer must use his intu­

ition to determine when a constraint is necessary. For example, the expression

(c - e x p r r (z e r o ? r) 0) has a constraint that is unnecessary. It is always

satisfied and it doesn’t give the reader any more information than the object

Page 40
expression 0. For simple examples of polymorphic functions, a user or a ma­

chine can look at the procedure body and induce a constraint for the domain

and range. For example, given the expression

(lambda (x) (+ x 7)),

one can see that x must be some number. If a tool could in d u c e data con­

straints from Scheme programs, the programmer could put in less verbose

constraints. The programmer would put in the interesting constraints that a

reader or a machine could not induce on its own.
N #

For example, consider the expression (<? a b) . This expression

would not be a good data constraint because if a or b is not a number, then it

will raise an error. But since the variables must be numbers to make the con­

straint true, a tool may be able to induce the improved data constraint (an d (

number? a) (number? b) (<? a b)) from the original.

But, developers should put in data constraints when they feel confirma­

tion of the type inference will help.

It should be noted that strongly typed languages are also verbose, but

they provide fewer opportunities to avoid verbosity. In the following declara­

tion, the required type mark STRING does not provide any more information.

A : constant STRING := "Hello World";

3. Data constraints help one to understand one’s module interfaces. This

method makes orthogonal languages more feasible for general-purpose pro­

gramming. Since orthogonal languages allow programmers great freedom, it

is difficult to detect errors in an orthogonal language program at compile

time. This weakness is attributed to their lack of language-defined restric-

Page 41
tions, which form the basis for static checking. But user-defined restrictions

can also form the basis for static checking.

Data constraints allow the user to put back the structure they want and

n eed .

4. One can observe that it is impossible to write general-purpose deci­

sion procedures to determine whether a non-trivial property holds for arbi­

trary procedure objects. For example, if one applies an arbitrary procedure to

another procedure, one might expect the procedure parameter to halt normal­

ly if given any type of input. But since this constraint is a statement of the

unsolvable halting problem, a programmer cannot document this property

with a decision procedure.

This is a problem, because the programmer is trying to use the method

in a way that approaches the theoretical limits of computability. Therefore,

this is a language-independent problem. This is a problem in any system that

supports general data constraints.

In this method, data constraints are decision procedures (they always

halt). Therefore, data constraints in this method cannot describe non-recur­

sive sets. (Note: non-recursive sets do not have a decision procedure. It might

be possible to allow accepting procedures (that halt only if true) to be data

constraints. Then, data constraints can also describe recursively enumerable

sets.).

5. Besides this language-independent problem, standard Scheme has one

language-dependent problem. Standard Scheme does not provide an explicit

way to check if a program applies the correct number of arguments to a pro­

cedure object. There is no general way to guard against entering an error en­

vironment because a program applies the wrong number of arguments to a

procedure. To allow explicit checking for this condition, the Scheme standard

should define a new essential procedure that takes a procedure as input. This

Page 42
procedure would determine the bounds on the number of actual parameters

for the input procedure.

Without such a facility, a system can only test this condition implicitly.

From this case study, we can conclude:

1. Data constraints are more flexible than a typing system.
2. Data constraints are more powerful than a typing system in its ability to

catch errors at run-time.
3. Describing conditions in terms in “total” decisions procedures are limit­

ing; undecidable properties cannot be documented.
4. Run-time checking can be costly.
5. Constraints can sometimes be verbose and redundant (like a typed lan­

g u ag e) .

10. Performing Static Semantic Analysis
on Scheme Data Constraints

This section discusses static semantic analysis of Scheme's data con­

straints. Motivation for static semantic support is first discussed. Then, this

section discusses the tool.

10a. Motivation
Strongly typed languages perform extensive static type checking anal­

ysis. But static semantic analysis is not a strong point of Scheme. As an or­

thogonal language, its lack of rigid structure makes it difficult for a translator

to find errors at compile time. This is why Scheme does most error checking at

ru n - t im e .

Since run-time constraint checking can become costly, deferring all

error checking to dynamic semantic analysis is undesirable. For example, a

programmer must constrain the domain of the binary search to sorted lists.

But, can a system justify using a log(N) procedure just to check the integrity

of a binary search parameter? Avoiding the cost of run-time checks was a

stimuli for the development of strongly typed systems. These systems elimi­

nate all type errors at compile-time.5 Though a system can justify some dynam­

ic semantic analysis, it should minimized such cost. Surely, most of the execu­

tion time should be spent doing work for the problem itself. Furthermore,

run-time constraints can impose a large storage penalty; when a program in­

cludes run-time checks, it becomes bigger.

5 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers Principles,
Techniques, and Tools, Addison-Wesley Publishing Company, Reading Mass.,
page 348.

Page 43

Page 44
There is a way to circumvent this problem in a run-time constraint

checking method. During development and debugging, developers still impose

run-time checks. But before shipping the final product, the developers should

convince themselves (through verification and testing) that the constraint

checks are unnecessary (always side-effect free and true). Then, they turns

off all constraint checking in the product given to the customer. If the con­

straints are unnecessary, then this will not change the meaning of the pro­

gram. But because of this decision, a data constraint method cannot help make

the finished software product fault tolerant.

Can this design method make Scheme programs easier to analyze s tati­

cally? This is desirable; then Scheme programmers can rely less on testing to

debug programs. As explained earlier, static semantic analysis is not feasible

in a plain orthogonal language program. But data constraints may put enough

structure back into the program to make some static semantic analysis possi­

ble. Also, if there are a few simple constraints that an analysis tool cannot re­

move at compile time, it may be possible to leave the remaining constraint in

the program. If an optimizer removes most of the data constraints at compile

time, then a program may achieve fault tolerance at a reasonable cost.

Here are simple examples of Scheme constructs that a tool could check at

compile time. When a program applies 0 to next-even, one can see (without

execution) that the constraint is satisfied. But, when a program applies 1 to

next-even, a person can see that the constraint is violated.

10b. The Static Semantic Analysis Tool
To determine if data constraints make Scheme programs easier to ana­

lyze statically, I wrote a tool. This tool is meant to perform more static seman­

tic analysis than the Scheme translator. It is much like the C lint facility.

The following are highlights of the lint facility's features.

Since a Scheme lint facility is much like the front end of a compiler, it

Page 45
has a symbol table. Unlike the symbol table for the Scheme system, the lint fa­

cility symbol table stores information about constraints imposed on lambda ex­

p re ss io n s .

The symbol table stores information about all global variables seen, as

well as the variables in local environments. The lint facility adds information

about a variable when it processes a local environment. The lint facility re­

moves that information from the symbol table, when it finishes processing a

local environment.

This happens because these static scope variables are no longer visible

to succeeding environments.

The lint facility was implemented with two symbol tables. One symbol

table is for objects and the other is for macros. I made this separation because

Scheme does not treat macros as first-class objects. For example, one can’t pass

macro to procedures or assign macros to different variables. (In the future, it

may be interesting to see if a Scheme dialect should treat macros as first-class

ob jects .)

To get information into the lint facility’s symbol tables, I built a new

loader for my Scheme interpreter. This loader behaves like the system loader,

except it puts information into the new symbol tables. For top-level, user-de­

fined procedures, it is enough to store the expected number of parameters, the

precondition, and post-condition. By storing the number of parameters, a sys­

tem can check this condition implicitly.

To analyze Scheme expressions, this lint facility unfolds all macros

(both user and language defined) and processes the core language. I made this

decision because the lint facility was meant to be a stand-alone tool (as opposed

to being integrated into the translator). As a stand-alone tool, the lint facility

and the Scheme translator perform redundant analysis. But by unfolding

macros, the lint facility's can avoid some redundant processing. Also, it

Page 46
seemed possible to decompose an expression, analyze it, and restore the high-

level form elegantly for diagnostics. And if this is not possible, it is still possi­

ble for a human to find errors in a code segment, when given the equivalent,

decomposed, core language code segment.

However, as a result of processing the core language, the analysis of

programs with c a l l / c c (a mechanism used to manipulate continuations ex­

plicitly) is difficult. At this level, the call/cc in Scheme is like a goto statement

in an imperative language; it is difficult to specify formally. The call/cc

mechanism is easier to specify at a lower level of abstraction.

The lint facility expects all external definitions (global variables) to be

explicitly declared. Since the Scheme's formal semantic description does not

explain external definitions, translators treated them differently from inter­

nal definitions (those in a local environment). Furthermore, different

Scheme implementations treat external definitions inconsistently. Some ver­

sions of Scheme allow s e t ! to declare top-level variables implicitly. These

versions treat d e f i n e as another name for s e t ! . Other versions enforce the

property that a program should explicitly declared variables with d e f i n e , be­

fore that program can assign values to its variables. In deference to good soft­

ware engineering principles, the lint facility expects explicit declarations. A

lint facility that allows s e t ! should warn people when their program has not

defined the assignee.

The Scheme lint facility was implemented in MacScheme. Though the

case study was developed using PC Scheme, I thought it would be interesting to

show that the data constraint method was not implementation specific.

The lint facility has one advanced feature; it doesn’t stop on the first

error. When an error is detected, the tool records the error, invokes error re­

covery, and looks for more errors.

While building the lint facility, many problems were encountered.

Page 47
Looking beyond the error recovery, the lint tool created is primitive. It

can tell the programmer when he is using the wrong format for a basic form.

For example, the lint tool records an error if a basic form has the wrong num­

ber of parameters. The lint facility can tell the programmer if a symbol has

not been bound. It can update the symbol table when it sees external defini­

tions and macros.

Unfortunately, it is not sophisticated enough to perform sophisticated

program verification. Also, this version of Scheme lint facility does not build

l ib r a r ie s .

Furthermore, during the development phase, memory problems were

encountered; It is difficult to load the lint tool and use it on a Macintosh SE sys­

tem with 1 megabyte of RAM.

Nevertheless, I am confident that a designer could take this primitive

tool and produce a program that can perform extensive static semantic analy­

sis on Scheme programs.

Furthermore, I believe that an orthogonal language like Scheme sup­

ports the data constraint method better than a strongly typed procedural lan­

guage. Since the data constraint method makes it possible to put the structure

back into an orthogonal program, it is possible to track errors in an orthogo­

nal language, without sacrificing flexibility. This makes orthogonal lan­

guages feasible for general-purpose programming.

11. Plans for the Future
Eventually, I would like to use a theorem prover, which uses unifica­

tion, to verify constraints at compile time. Unification has been successful in

determining the type inferences of polymorphic functions in the ML program

la n g u a g e .6 It is my hope that a developer can build a type inference system

for lambda expressions and extend it so it can also confirm user-defined data

c o n s t r a in ts .

I would also like to integrate this improved facility into the phases of

some Scheme language translator. This facility will need privileged

read/write access to the system symbol tables. This will reduce the redundant

work that a stand-alone tool must perform (like processing macros and main­

taining a separate symbol table). This makes it possible to provide the exten­

sive static semantic support with less space penalties. Though the tool re ­

quires privileged access to the symbol tables of a Scheme translator, this will

not change the language to the end user. Also, the new facility will need a li­

brary, so it can remember information about previously processed external

definitions. Furthermore, the decisions on the status of assignment statements

and external definitions will still apply.

6 Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers Principles,
Techniques, and Tools, Addison-Wesley Publishing Company, Reading Mass.,
page 364-70.

Page 48

Page 49

regular Scheme

Scheme without
user macros

core-language
Scheme

Scheme in
continuation
passing style

Originally, I decided to analyze data constraints at the core-language

level. Now, I would explore analyzing data constraints after the translator

converts the program into continuation passing style. At this point, denota-

tional semantics (not Scheme) describes the meaning of the program.

Beside creating an improved static semantic analysis tool, computer sci­

entists should determine the feasibility of functional and function-oriented

languages for general-purpose, production quality programming. What are

the consequences of eliminating the destructive assignment statement? Are

problems harder to specify without assignment statements? Are functional

programs innately less efficient? How much harder is it to process function-

oriented languages versus functional languages? What is the best medium for

the end users? I would hope that Scheme can provide more features that will

reduce the need to use assignment statements further, without making the

language rigid or more complicated.

To simplify the user's view of the Scheme language further, we need

more research in exploiting unbounded integers and rational numbers (with

correct precision). Unlike fixed point and floating point numbers, these types

Page 50
should behave more like mathematical numbers and have simple axioms. The

revised report on Scheme encourages the support of such types; “What the

user should see is the usual operations on numbers produce the mathematical­

ly expected result, within the limits of the implementation.”7 U n fo r tu n a te ly ,

the Scheme dialects I have tested appears to use the conventional fixed and

floating points. The unbound integers and rational numbers should allow

more flexibility for a translator to perform extensive algorithm improvement.

It was suggested earlier to consider the worth of using data constraints

for non-recursive sets (may not halt on bad data). If such a constraint is vio­

lated, run-time error checks may not halt. However, these types of data con­

straints, though highly fault intolerant, might still be useful for increasing

one’s ability to document problems and localize errors during debugging.

In the future, the Scheme language definition should introduce a con­

struct called define-constant. One would use this to declare read-only, exter­

nal definitions.

Lastly, one lesser question that needs to be answered is “should Scheme

treat macros as first-class objects?”

Obviously the data constraint method is well-suited for function-orient­

ed languages. Function-oriented languages can support the method better

than procedural languages. Introducing data constraints into languages that

embrace the von Neumann state transition model makes these languages too

complicated. Function-oriented languages are generally more feasible to use

than functional languages. Though it is harder to detect errors in a plain or­

thogonal language, data constraints can make function-oriented languages

easier to analyze than a strongly typed language. Though dynamic semantic

analysis is costly, there is promise that software tools can check data con-

7 Rees, Jonathan and William Clinger, ed. Rev ised^ Report on the
Algori thm ic Language Scheme, MIT Artificial Intelligence laboratory,
September 1986, page 18.

Page 51
straints statically.

Appendix: An Introduction to Scheme
This section is a gentle introduction to the features of Scheme relevant

to this thesis. First, this section will highlight some features of Scheme. Then,

this section discuss what one can do in Scheme. Lastly, the formal semantic

definition of Scheme will be discussed.

The programming language Scheme is derived from Lisp. Because it is

easily extended and modified, Lisp has served as the basis of many attempts to

create a better language.

Only the compiler writer can change Pascal, but any Lisp programmer
can alter Lisp, or adapt it to some specific purpose, or even build an
entirely new language on top of it.8

Superficially, Scheme has the uniform, simple syntax of Lisp. A

symbolic expression is either an atom or a list of expressions delimited by

parenthesis. All function calls have prefix operator notation.

Scheme has both its programs and its data using the same written

format. This simplifies treating programs as data. Like other forms of data,

programs can be read, written, or built by other programs.

Scheme has automatic heap management and encourages recursive

t h in k in g .

8 PC Scheme Tutorial, Texas Instruments, Austin, Texas, page ix.

Page 52

Page 53
Scheme maintains Lisp’s tradition of simplicity. Scheme has a formal

semantic definition whose framework has a core language that includes

constants, variables, procedure applications, lambda expressions, “ if”

conditional expressions, and “set!” assignment expressions. The Scheme

definition uses this lean core language to describe other concepts in the

la n g u a g e .

Scheme variables have static scope. The following code illustrates this

fact:

= > (define a 5)
a
= > (define (add5 x) (+ a x))
add5
= > (define (f y) (let ((a 3)) (add5 y)))
f
=> (f 6)
? ? ? ? ? ?

Intuitively, programmers familiar with block structured languages

would expect (f 6) to return 11. The preceding segment does just that,

because these variables have static scope. The variable a in the function add5

refers to the global variable, because add5 was declared in the scope of the

global environment. But in a language where variables have dynamic scope,

(f 6) will return 9. Assuming dynamic scope, add5 would eva lua te variable a

in the scope of a local environment that hides the global a with a local a. A

static scope variable is context-free; an identifier within a subprogram will

refer to the same object, irrespective of where that subprogram is called. This

is not the case with a dynamic scope variable. This is probably why static

scope is more popular and easier for programmers to comprehend.

Almost every Scheme entity is a first-class object. This makes Scheme

Page 54
orthogonal; one can manipulate procedures in the same way as integers and

s t r in g s .

In Scheme, only one value is associated with an identifier. Alternately,

some lisp dialects allow a variable within the scope of some program to be a

function in one place and an object in another place. These dialects do not

treat procedures as first-class objects. The Scheme alternative is simpler; the

meaning of a variable is context free. The latter alternative adds needless

complications for the user and for tool developers.

All Scheme objects have dynamic extent; this means that Scheme objects

theoretically exist forever. In actuality, the Scheme system can collect an

object as garbage only when all references to that object are lost. The

following Scheme procedure exploits dynamic extent.

(define count
(let ((next 0))

(larrbda ()
(let ((v next))

(set! next (+ next 1))
v)))))

When called in a system without dynamic scope, the procedure count
will enter an error environment and complain that it could not find the

variable next. In Scheme, this procedure will “hold onto” the variable next
from the enclosing local environment.

In a system with objects that have dynamic extent, the stack model of

allocating local environments is abandoned for the heap model. In the

previous example, the expression associated with the environment containing

that local variable next has executed. In a stack-based system, the lifetime of

that variable is completed and its object is collected. In a heap-based system,

the object of that variable is not collected, because there is an existing

Page 55
reference to that variable.

This example shows how dynamic extent eliminates the possibility of a

form of dangling reference.

And, the feature allows the preceding procedure to have state data that

is not in the global environment. The following example shows how the state

based procedure c o u n t w orks.

=> (count)
0
=> (count)
1
=> (count)
2

There is no chance that another procedure can overwrite this state data

accidentally. The visibility of n e x t is restricted to procedure c o u n t .

This feature of Scheme makes the language capable of supporting

packaging mechanisms and message passing.

Scheme has efficient recursion (no needless storage penalty for using

tail recursion). By abandoning the stack model of allocating local

environment, Scheme presents a model of computation that may seem less

efficient to the user. But Sussman and Steele, the creators of Scheme, found

that it is reasonable to optimize Scheme programs so some programs allocate

local variables on a stack or in registers (this will be explained in more detail

shortly). So though the user can think that Scheme allocates all objects from

the heap; the translator may also store objects in a stack or in registers. The

user doesn’t have to worry about these details; he or she can concentrate on

writing a program in this simple, high-level, one-layer environment.

Scheme has powerful first-class objects called continuations. They

represent the future of a computation. They are like the address in a program

Page 56
counter, except continuations contain all the information needed to continue a

particu lar computation.

Continuations give a name to a concept that already exists in

programming languages. Computer scientist are aware that program

statements specify a particular flow of control. After the condition of an i f

statement is evaluated, control flow resumes at either the then par t or the

else part. Scheme gives advanced programmers a hook so they can specify

control flow explicitly.

It is noteworthy that continuations are a form of an unstructured

branch, yet continuations do not have some of the problems associated with

goto statements. Advocates of structured programming know that goto

statements do not work well within the framework of a stack-based

environment. But the continuation (an unstructured construct) works well in

a h eap -based env ironm ent (w ith dynam ic ex ten t) . F u r therm ore ,

programming languages with continuations can provide powerful extensions,

such as coroutines and non-blind backtracking, within the language

framework. Since programming languages have an influence on a

p ro g ram m er’s problem so lv ing approach , co n tin u a tio n s will allow

programmers to be more creative.

How is Scheme used? Scheme is flexible enough to support many

program paradigms. Scheme can support manifest types (strong typing

achieved by using tags), delayed evaluation, norm al-order evaluation,

packaging, generic operators, logic programming, deductive information

retrieval, and message passing. Likewise, Scheme is suitable for supporting

new paradigms.

Scheme is so simple, it is a good candidate for formal semantic

definitions. With Scheme, one can show how to define program semantics

using text substitution, the conventional environmental model, a Scheme

Page 57
interpreter written in Scheme, translation to primitive register machines, and

denotational semantics.

Scheme has a standard language definition called the Revised Report of

the Algorithmic Language Scheme.

The standard includes a language framework with a denotational

semantic definition that uses the Scott-Strachey approach to programming

language theory. This is beneficial, because denotation semantic definitions

help language experts understand the fine details of a language feature.

Designers define languages like Ada using English prose. As a consequence,

the fine details of some language features are unclear, because its English

prose description is ambiguous.

The standard also includes a section that describes compound language

features as macros. These macros reduce these features into core language

code segments.

The denotational semantics of Scheme embraces the continuation

passing style, where control flow is expressed explicitly using continuations.

As a benefit, the formal semantic definition of Scheme is small, simple, and

flexible, when compared to the denotational semantics of other languages.

As a benefit, this style makes the language definition easier to optimize.

This is why Scheme translators can support efficient recursion. It is also why

the developers of ORBIT, an optimizing compiler for Scheme, have produced

object code that is competitive with object code produced by compilers for

conventional Algol-like languages. Even without performing conventional

optimizations, like common sub-expression elimination and code motion

(moving redundant code outside loops), the Orbit compiler produced code that

is comparable to the best compilers for Lisp and non-Lisp languages.9

Though all Scheme dialects must adhere to the standard, some

9 David Kranz, “ORBIT: An Optimizing Compiler for Scheme,” SIGPLAN, page
219-22.

Page 58
procedures in the standard are non-essential. The standard only encourages

developers to build a macro facility; it does not call for every Scheme dialects

to have one. Also, the standard does not impose a uniform macro declaration

and macro application method for every Scheme dialects. The standard is

flexible on this issue, because it feels there is no universally superior macro

facility model.10 Furthermore, since the definition vaguely describes some

language features, different dialects came up with different interpretations.

As it stands, Scheme is a language that is simple, yet flexible enough to

support many paradigms and suitable for large scale production quality

p ro g r a m m in g .

10 Rees, Jonathan and William Clinger, ed. Revised? Report on the
Algori thm ic Language Schem e , MIT Artificial Intelligence laboratory,
September 1986, page 37.

B I B L I O G R A P H Y
Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman, Compilers Principles,

Techniques, and Tools, Addison-Wesley Publishing Company, Reading Mass.
Allen, John R., “The Death of CREATIVITY: Is Common Lisp a Lisp-like

L a n g u a g e ? ” , A I Expert, February 1987, page 48-61.
Abelson, Harold and Gerald Jay Sussman, Structure and Interpretation

o f Computer Programs, McGraw-Hill Book Company, New York.
Barstow, David R., ed., Interactive Program Environments , McGraw-Hill

Book Company, New York, 1984.
Bauer, F.L., The Munich Project CIP Volume 1: The Wide Spectrum

Language CIP-L, Springer Verlag, 1985.
Comprehensive Examination Question List, The College of William &

Mary, 1989.
Clocksin, W.F. and C.S. Mellish, Programming in Prolog , second edition,

Springer-Verlag, Berlin, Germany, 1984.
Davis, Martin D. and Elaine J. Weyuker, Computability, Complexity, and

Languages , Academic Press, Inc., Orlando Florida, 1983.
Cheatham, Thomas E. Jr., Program Refinement by Transformation ,

Center for Research in Computing Technology, Harvard University ,
Cambridge, MA.

Darlington, John, Program Transformation, Byte Magazine, August 1985.
Dybvig, R. Kent, The Scheme Programming Language, Prentice-Hall,

Inc. Eglewood Cliffs, New Jersey, 1987.
Gries, David, The Science o f Programming, Springer-Verlag, New York,

1981.
Hofstadter, Douglas, Goedel, Escher, Bach: An Eternal Golden Braid,

Vintage Books, New York.
Horowitz, Ellis, Third Edition Programming Languages: A Grand Tour,

Computer Science Press, USA, 1987.
Kranz, David, “ORBIT: An Optimizing Compiler for Scheme,” SIGPLAN.
Luckham, David C., ANNA : A Language for Annotating Ada Programs

Reference Manual, Springer Verlag, Berlin, Germany, 1987, page 1.
MacScheme + ToolsmithF^ a Lisp fo r the future, Semantic Microsystems,

Beaverton, Oregon, February 1988.
McCarthy, J., A Basis for a mathematical theory of computation., Proc.

Western Joint Computer. Conference., Los Angeles, May 1961, page 225-238, and
Proc. IFIP Congress 1962, North Holland Publ. Co., Amsterdam, 1963.

M ills , H arlan , The New Math of C om puter P rogram m ing ,
Communications of the ACM, volume. 13, number 1, January 1975, page 43-48.

PC Scheme A Simple, Modern Lisp User's Guide, Texas Instruments,
Austin, Texas.

PC Scheme Tutorial, Texas Instruments, Austin, Texas.
Rees, Jonathan and William Clinger, ed. Revised? Report on the

Algori thmic Language Scheme, MIT Artificial In telligence laboratory,
September 1986.

Stoy, Joseph E., Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory, The MIT Press, Cambridge, Massachusetts,
1987.

TI Scheme Language Reference Manual, Texas Instruments, Austin,
Texas.

Page 59

VITA

Earl Stavis Harris Jr.
Bom in New Rochelle, New York on June 3, 1962. Graduated from Mount

Vemon High School in that city, June 1980. Received Bachelors degree from
Harvard University, June 1984.

In September 1987, the author entered the College of William and Mary
as a graduate assistant in the Department of Computer Science. The following
year, he was awarded the Graduate Dean’s fellowship. The course requirement
for this degree have been completed, but not the thesis: Data Constraints in
Function-Oriented Languages.

Page 60

	William & Mary
	W&M ScholarWorks
	1990

	Data Constraints in Function-Oriented Languages
	Earl Stavis Harris
	Recommended Citation

	tmp.1539793463.pdf.XSPJE

